top of page

Biofuels research group

The Biofuels research group consists of students with chemistry, environmental engineering, and chemical engineering knowledge who are doing both fundamental research and applied process engineering research to create biofuels and useful chemicals from wastes. The name of the group changed from Biochem to Biofuels in May 2023.  

Biofuel group infographic updated v3j 240514.jpg

Usman Muhammad

IGP-A (MEXT Scholarship), GEDES, D3 Student

Enhancement of Lipids Recovery Efficiency for Biodiesel Production from Wastewater Sludge by using Direct Lipids Extraction

The increasing demands and use of petroleum fuels are harmful to the underground fossil fuels level and environment as well. There is a growing interest in biofuel production to replace fossil fuels by managing and utilization of wastes (biomass). Biodiesel is one of the promising biofuels produces from different edible and non-edible resources which has the same potential as petroleum diesel. Due to its feedstock and pre-treatment, it has a great challenge of high production cost which ranges from $4.4 to $6.0 per liter. Sewage sludge has been tested as a potential source of biodiesel production because of high generation and free availability but still, it has the same challenge of production cost in which the drying process contributes >50%. Our new approach is to produce biodiesel by direct lipids extraction with the elimination of the drying process and efficient lipids recovery by using different extraction stages.

Screen Shot 2022-11-18 at 15.33.42.png

Muhammad Harussani Moklis (M. M. Harussani)

IGP-C (MEXT Scholarship), Energy Course, D2 student

Glycerol upgrading via thermo-electrocatalytic deoxygenation

Glycerol is a by-product of biodiesel manufacturing, saponification process, fatty acid and bioethanol industries. Thus, the value of glycerol is decreasing in the global market due to its surplus. Electrochemical valorization of biomass-derived feedstocks, glycerol, into biofuels offers a sustainable method for utilization of biomass waste and for greener biofuel manufacturing under milder operating conditions. Here, we investigate the novel approach of thermo-electrocatalytic deoxygenation of glycerol at ambient temperature and pressure. The application of elevated temperature within the electrolyte and selective electrolysis of glycerol over electrocatalyst, which also acts as electrode, will allow two-fold deoxygenation to occur within the single cell system. This strategy, therefore, can be a promising alternative to upgrade diverse oxygenated compounds into desired biofuels.
Harussani Glycerol ECR GA.png

Md. Rubel

IGP-A (MEXT Scholarship), Energy Course, M2 student

Valorization of waste cooking oil (WCO) to sustainable aviation fuel (SAF) via catalytic hydro-processed esters and fatty acids (HEFA) process: Assessment of catalytic activity and process parameters

SAF is currently more expensive than conventional jet fuels due to higher production costs, limited production capacity, and uncertainty in feedstock availability. As a result, there are several ways to reduce the costs of SAF production in terms of reducing energy and developing new technologies, such as the use of new catalysts and so on. Additionally, when noble group catalysts are expensive and transition group catalysts (mono and di) require higher temperature, pressure, and reaction time for catalytic hydrogenation of WCO then investigate the valorization of WCO to produce 80-90% efficient and effective SAF via the catalytic hydrogenation of the HEFA process by implementation of a newly developed trimetallic Co-Mo-Ni/Al2O3 catalyst followed by optimizing the catalytic activity and reaction conditions are the main aim and objective of this research. Furthermore, this could provide a sustainable solution for disposing of WCO, reducing dependence on fossil fuel, expanding the SAF market, reducing GHGs concerns, and climate change in the aviation industry, and acquiring net zero in 2050.

Rubel Picture 1 JPEG.jpg
bottom of page